Устройство повышающего трансформатора напряжения — читаем во всех подробностях

Существует огромное количество видов электрических устройств. Предлагаем рассмотреть, что это такое – понижающие и повышающие трансформаторы напряжения, для чего нужны эти приборы, их принцип работы и коэффициент трансформации.


Блок: 1/5 | Кол-во символов: 232
Источник: https://www.asutpp.ru/transformatory-napryazheniya.html

Функционирование

Чтобы понять, что такое трансформаторы повышающие напряжение, нужно вникнуть в принцип работы. Оборудование изготавливается для электростанций, схемы конструкции которых относятся к проходной категории.

Повышающий трансформатор

Повышающий трансформатор на электростанциях используется для обеспечения населенных пунктов, прочих объектов током с определенными техническими показателями. Без преобразователя высокое напряжение по пути своего следования постепенно снижается. Конечный потребитель получал бы недостаточное количество электроэнергии. На конечной в цепи электростанции благодаря этой установке, принимают электричество соответствующего значения. Потребитель получает напряжение в сети до 220 В. Промышленные сети обеспечиваются до 380 В.

Схема передачи электроэнергии на большие расстояния

Схема, показывающая работу трансформатора в линии, включает в себя несколько элементов. Генератор на электростанции производит электричество 12 кВ. Оно поступает по проводам к повышающим подстанциям. Здесь устанавливается трансформаторный аппарат, призванный повышать показатель в линии до 400 кВ.

От подстанции электричество поступает в высоковольтную линию. Далее энергия попадает на понижающую подстанцию. Здесь она снижается до 12кВ.

Передача электроэнергии

Трансформаторами с обратным принципом действия ток направляется в низковольтную линию передач. В конце устанавливается еще один понижающий агрегат. От него электричество с показателем 220 В поступает в дома, квартиры и т. д.

Блок: 2/8 | Кол-во символов: 1407
Источник: https://ProTransformatory.ru/vidy/povyshayushhij-transformator

Трансформатор — что это такое


Само название данного технического приспособления пошло от латинского термина transformare, что означает – преобразовывать, изменять, превращать. Трансформатором называется устройство статического электромагнитного типа, которое выполняет задачу преобразования напряжения переменного типа, а также служит для осуществления гальванической развязки в электрических схемах.

В последнем случае имеется ввиду такой тип передачи электрической энергии или информационного сигнала, при котором между контактирующими деталями нет непосредственного электрического контакта.

Трансформатор может быть однофазным или же трехфазным, хотя по особенностям конструкции они и не слишком сильно отличаются.

Данное устройство было изобретено, основываясь на работах великого ученого Фарадея (по другим версиям – он его и изобрел), который открыл явление электромагнитной индукции. В 1831 году М. Фарадей и другой ученый Д. Генри разработали первое схематическое изображение рассматриваемого прибора.

Позже, в 1876 году, русский изобретатель П. Н. Яблочков запатентовал первый трансформатор переменного тока.

Блок: 2/9 | Кол-во символов: 1120
Источник: https://1001student.ru/fizika/transformator.html

Классификация трансформаторов

По назначению ТР бывают:

  • ТР напряжения;
  • ТР тока;
  • защитные;
  • промежуточные;
  • лабораторные.

По конструкции выделяют сухие (охлаждение за счет воздуха) и масляные (магнитопровод и обмотки находятся в резервуаре с маслом) трансформаторы.

Блок: 3/7 | Кол-во символов: 254
Источник: https://www.MisLife.ru/raznoe/princip-raboty-transformatora-napryazheniya.html

2. Устройство трансформатора


2.1. Магнитопровод. Магнитные материалы

Назначение магнитопровода заключается в создании для магнитного потока замкнутого пути, обладающего минимальным магнитным сопротивлением. Поэтому магнитопроводы для трансформаторов изготавливают из материалов, обладающих высокой магнитной проницаемостью в сильных переменных магнитных полях. Материалы должны иметь малые потери на вихревые токи, чтобы не перегревать магнитопровод при достаточно больших значениях магнитной индукции, быть достаточно дешевыми и не требовать сложной механической и термической обработки.

Магнитные материалы, используемые для изготовления магнитопроводов, выпускаются в виде отдельных листов, либо в виде длинных лент определенной толщины и ширины и называются электротехническими сталями.

Листовые стали (ГОСТ 802-58) изготавливаются методом горячей и холодной прокатки, ленточные текстурованные стали (ГОСТ 9925-61) только методом холодной прокатки.

Также применяют железноникелевые сплавы с высокой магнитной проницаемостью, например, пермаллой, перминдюр и др. (ГОСТ 10160-62), и низкочастотные магнитомягкие ферриты.

Для изготовления разнообразных относительно недорогих трансформаторов широко применяются электротехнические стали, имеющие небольшую стоимость и позволяющие трансформатору работать как при постоянном подмагничивании магнитопровода, так и без него. Наибольшее применение нашли холоднокатаные стали, имеющие лучшие характеристики по сравнению со сталями горячей прокатки.

Магнитопроводы из электротехнической стали

Сплавы с высокой магнитной проницаемостью применяют для изготовления импульсных трансформаторов и трансформаторов, предназначенных для работы при повышенных и высоких частотах 50 – 100 кГц.

Недостатком таких сплавов является их высокая стоимость. Так, например, стоимость пермаллоя в 10 – 20 раз выше стоимости электротехнической стали, а пермендюра – в 150 раз. Однако в ряде случаев их применение позволяет существенно снизить массу, объем и даже общую стоимость трансформатора.

Другим их недостатком является сильное влияние на магнитную проницаемость постоянного подмагничивания, переменных магнитных полей, а также низкая стойкость к механическим воздействиям – удар, давление и т.п.

Магнитопроводы из сплавов с высокой магнитной проницаемостью

Из магнитомягких низкочастотных ферритов с высокой начальной проницаемостью изготавливают прессованные магнитопроводы, которые применяют для изготовления импульсных трансформаторов и трансформаторов, работающих на высоких частотах от 50 – 100 кГц. Достоинством ферритов является невысокая стоимость, а недостатком является низкая индукция насыщения (0,4 – 0,5 Т) и сильная температурная и амплитудная нестабильность магнитной проницаемости. Поэтому их применяют лишь при слабых полях.

Магнитопроводы из магнитомягких прессованных ферритов

Выбор магнитных материалов производится исходя из электромагнитных характеристик с учетом условий работы и назначения трансформатора.

2.2. Типы магнитопроводов

Магнитопроводы трансформаторов разделяются на шихтованные (штампованные) и ленточные (витые), изготавливаемые из листовых материалов и прессованные из ферритов.

Шихтованные магнитопроводы набираются из плоских штампованных пластин соответствующей формы. Причем пластины могут быть изготовлены практически из любых, даже очень хрупких материалов, что является достоинством этих магнитопроводов.

Магнитопровод из плоских шихтовых пластин

Ленточные магнитопроводы изготавливаются из тонкой ленты, намотанной в виде спирали, витки которой прочно соединены между собой. Достоинством ленточных магнитопроводов является полное использование свойств магнитных материалов, что позволяет уменьшить массу, размеры и стоимость трансформатора.

Трансформатор с ленточным магнитопроводом

Тороидальный трансформатор из ленточного магнитопровода

В зависимости от типа магнитопровода трансформаторы подразделяются на стрежневые, броневые и тороидальные. При этом каждый из этих типов может быть и стрежневым и ленточным.

Стержневые.

В магнитопроводах стержневого типа обмотки располагается на двух стержнях (стержнем называют часть магнитопровода, на которой размещают обмотки). Это усложняет конструкцию трансформатора, но уменьшает толщину намотки, что способствует снижению индуктивности рассеяния, расхода проволоки и увеличивает поверхность охлаждения.

Схематичное изображение трансформатора стержневого типа

Трансформатор стержневого типа

Стержневые магнитопроводы используют в выходных трансформаторах с малым уровнем помех, так как они малочувствительны к воздействию внешних магнитных полей низкой частоты. Это объясняется тем, что под влиянием внешнего магнитного поля в обеих катушках индуцируются напряжения, противоположные по фазе, которые при равенстве витков обмоток компенсируют друг друга. Как правило, стержневыми выполняются трансформаторы большой и средней мощности.

Броневые.

В магнитопроводе броневого типа обмотка располагается на центральном стержне. Это упрощает конструкцию трансформатора, позволяет получить более полное использование окна обмоткой, а также создает некоторую механическую защиту обмотки. Поэтому такие магнитопроводы получили наибольшее применение.

Схематичное изображение трансформатора броневого типа

Трансформатор броневого типа

Некоторым недостатком броневых магнитопроводов является их повышенная чувствительность к воздействию магнитных полей низкой частоты, что делает их малопригодными к использованию в качестве выходных трансформаторов с малым уровнем помех. Чаще всего броневыми выполняются трансформаторы средней мощности и микротрансформаторы.

Тороидальные.

Тороидальные или кольцевые трансформаторы позволяют полнее использовать магнитные свойства материала, имеют малые потоки рассеивания и создают очень слабое внешнее магнитное поле, что особенно важно в высокочастотных и импульсных трансформаторах. Но из-за сложности изготовления обмоток не получили широкого применения. Чаще всего их делают из феррита.

Схематичное изображение тороидального трансформатора

Тороидальный трансформатор

Для уменьшения потерь на вихревые токи шихтованные магнитопроводы набираются из штампованных пластин толщиной 0,35 – 0,5 мм, которые с одной стороны покрывают слоем лака толщиной 0,01 мм или оксидной пленкой.

Лента для ленточных магнитопроводов имеет толщину от нескольких сотых до 0,35 мм и также покрывается электроизолирующей и одновременно склеивающейся суспензией или оксидной пленкой. И чем тоньше слой изоляции, тем плотнее происходит заполнение сечения магнитопровода магнитным материалом, тем меньше габаритные размеры трансформатора.

За последнее время наряду с рассмотренными «традиционными» типами магнитопроводов находят применение новые формы, к числу которых следует отнести магнитопроводы «кабельного» типа, «обращенный тор», катушечный и др.

Новые формы магнитопроводов

На этом пока закончим. Продолжим во второй части.

Удачи!

Литература:

1. В. А. Волгов – «Детали и узлы радио-электронной аппаратуры», Энергия, Москва 1977 г.

2. В. Н. Ванин – «Трансформаторы тока», Издательство «Энергия» Москва 1966 Ленинград.

3. И. И. Белопольский – «Расчет трансформаторов и дросселей малой моности», М-Л, Госэнергоиздат, 1963 г.

4. Г. Н. Петров – «Трансформаторы. Том 1. Основы теории», Государственное Энергетическое Издательство, Москва 1934 Ленинград.

5. В. Г. Борисов, – «Юный радиолюбитель», Москва, «Радио и связь» 1992 г.

Блок: 3/3 | Кол-во символов: 6802
Источник: https://sesaga.ru/ustrojstvo-i-princip-raboty-transformatora.html

Разновидности

К категории повышающих разновидностей техники относится ряд устройств, отличающихся конструкцией, назначением, техническими характеристиками:

  1. Автотрансформатор. Обладает одной совмещенной обмоткой.
  2. Силовой. Наиболее распространенная разновидность среди приборов, которые повышают показатель напряжения.
  3. Антирезонансный. Обладает закрытой конструкцией. Из-за особого принципа функционирования имеют компактные габариты.
  4. Заземляемый. Обмотки соединяются звездой или зигзагом.
  5. Пик-трансформаторы. Отделяют постоянный и переменный ток.
  6. Бытовые. Повышение характеристик электричества при функционировании трансформатора производится в небольшом диапазоне. Помогают устранить помехи в бытовой сети, защитить технику от перепадов, пониженного и повышенного электричества.

Представленные конструкции отличаются мощностью и техническими характеристиками.

Блок: 4/8 | Кол-во символов: 860
Источник: https://ProTransformatory.ru/vidy/povyshayushhij-transformator

По количеству обмоток ТР бывают:


  • двухобмоточные (первичная и вторичная);
  • трехобмоточные (одна первичная и две вторичные или наоборот);
  • многофазные (несколько первичных и вторичных обмоток).

Блок: 4/7 | Кол-во символов: 186
Источник: https://www.MisLife.ru/raznoe/princip-raboty-transformatora-napryazheniya.html

Повышающий тороидальный трансформатор

Как вы понимаете, говоря «тороидальный трансформатор», подразумевают обычно сетевой однофазный трансформатор, силовой или измерительный, повышающий или понижающий, у которого тороидальный сердечник оснащен двумя или несколькими обмотками.

Работает тороидальный трансформатор принципиально так же как и трансформаторы с другими формами сердечников: он понижает или повышает напряжение, повышает или понижает ток — преобразует электроэнергию. Но тороидальный трансформатор отличается при той же передаваемой мощности меньшими размерами и меньшим весом, то есть лучшими экономическими показателями.

Главная особенность тороидального трансформатора — небольшой общий объем устройства, доходящий до половины в сравнении с другими типами магнитопроводов.

Шихтованный сердечник вдвое больше по объему чем тороидальный ленточный сердечник при той же габаритной мощности.

Поэтому тороидальные трансформаторы удобнее устанавливать и подключать, и уже не так важно, идет ли речь о внутреннем или о наружном монтаже.

Любой специалист скажет, что тороидальная форма сердечника является идеальной для трансформатора по нескольким причинам:

  • во-первых, экономия материалов на производстве,
  • во-вторых, обмотки равномерно заполняют весь сердечник, распределяясь по всей его поверхности, не оставляя неиспользованных мест,
  • в-третьих, поскольку обмотки имеют меньшую длину, КПД тороидальных трансформаторов получается выше в силу меньшего сопротивления провода обмоток.

Охлаждение обмоток — еще один важный фактор.

Обмотки эффективно охлаждаются будучи расположены в форме тороида, следовательно плотность тока может быть более высокой.

Потери в железе при этом минимальны и ток намагничивания сильно меньше. В итоге тепловая нагрузочная способность тороидального трансформатора оказывается очень высокой.

Экономия электроэнергии — еще один плюс в пользу тороидального трансформатора.

Примерно на 30% больше энергии сохраняется при полной нагрузке, и примерно 80% на холостом ходу, в сравнении с шихтованными магнитопроводами иных форм. Показатель рассеяния у тороидальных трансформаторов в 5 раз меньше чем у броневых и стержневых трансформаторов, поэтому их можно безопасно использовать с чувствительным электронным оборудованием.

При мощности тороидального трансформатора до киловатта, он настолько легок и компактен, что для монтажа достаточно применить прижимную металлическую шайбу и болт. Потребителю всего то и нужно выбрать подходящий трансформатор по току нагрузки и по первичному и вторичному напряжениям. При изготовлении трансформатора на заводе рассчитывают площадь сечения сердечника, площадь окна, диаметры проводов обмоток, — и выбирают оптимальные габариты магнитопровода с учетом допустимой индукции в нем.

Блок: 3/5 | Кол-во символов: 2744
Источник: https://transformator220.ru/vidy/transformator-povyshayushhij.html

Формула трансформатора

Так от чего же зависит напряжение, которое выдает нам трансформатор на вторичной обмотке? А зависит оно от витков, которые намотаны на первичной и вторичной обмотке !

где

U2  – напряжение на вторичной обмотке

U1 – напряжение на первичной обмотке

N1 – количество витков первичной обмотки

N2 – количество витков  вторичной обмотки

I1 – сила тока первичной обмотки

I2 –  сила тока вторичной обмотки

В трансформаторе соблюдается также закон сохранения энергии, то есть какая мощность заходит в трансформатор, такая мощность выходит из трансформатора:

Эта формула справедлива для идеального трансформатора. Реальный же трансформатор будет выдавать на выходе чуть меньше мощности, чем на его входе. КПД трансформаторов очень высок и порой составляет даже 98%.

Блок: 5/8 | Кол-во символов: 783
Источник: https://www.RusElectronic.com/ustrojstvo-transformatora/

Видео: Повышающий трансформатор

Блок: 5/5 | Кол-во символов: 36
Источник: https://transformator220.ru/vidy/transformator-povyshayushhij.html

Буквенные и схематические обозначения трансформатора

На всех электрических схемах трансформатор, равно как и его мощность и другие параметры, изображаются специальными символами и буквами. Само устройство изображается в виде двух проводков с несколькими витками, между которыми находится стержень в виде вертикальной линии.

Условные графические обозначения трансформаторов.

а – трансформатор без магнитопровода с постоянной связью;

б – трансформатор без магнитопровода с переменной связью;

в – трансформатор с магнитодиэлектрическим магнитопроводом;

г – трансформатор, подстраиваемый общим магнитодиэлектрическим магнитопроводом;

д – трансформатор со ступенчатым регулированием;

е – трансформатор однофазный с ферромагнитным магнитопроводом и экраном между обмотками;

ж – трансформатор дифференциальный (с отводом от средней точки одной обмотки);

з – трансформатор однофазный с ферромагнитным магнитопроводом трехобмоточный;

и – трансформатор трехфазный с ферромагнитным магнитопроводом, с соединением обмоток звезда – звезда с выведенной нейтральной (средней) точкой;

к – трансформатор трехфазный с ферромагнитным магнитопроводом, соединение обмоток звезда с выведенной нейтральной (средней) точкой – треугольник;

л – трансформатор трехфазный трехобмоточный с ферромагнитным магнитопроводом, с соединением обмоток звезда с регулированием под нагрузкой – треугольник – звезда с выведенной нейтральной (средней) точкой;

м – в развернутых обозначениях обмоток трансформаторов (Форма 2) допускается наклонное изображение линий связи, например, обмотка трансформатора с соединением обмоток звезда – треугольник;

н – трансформатор трехфазный трехобмоточный (фазорегулятор), соединение обмоток звезда – звезда;

о – трансформатор вращающийся, фазовращатель (обозначение соединения обмоток статора и ротора между собой производится в зависимости от назначения машины);

п – трансформаторная группа из трех однофазных двухобмоточных трансформаторов с соединением обмоток звезда – треугольник.

Что касается буквенных обозначений, то здесь все выглядит так:

  • О – указывает на однофазное устройство;
  • Т – трехфазное;
  • С – воздушный тип охлаждения;
  • М – масляное охлаждение;
  • Д – смесь воздушной и масляной системы;
  • Р – обозначает, что устройство с расщепленной обмоткой;
  • А – автотрансформатор.

Есть и другие буквенные обозначения, и в целом их очень много.

Блок: 8/9 | Кол-во символов: 2339
Источник: https://1001student.ru/fizika/transformator.html

Виды трансформаторов тока


  • сухие (обмотки имеют физическую связь, поэтому на ток во вторичной обмотке непосредственно влияет коэффициент трансформации);
  • тороидальные (первичная обмотка отсутствует, вместо нее шина или кабель);
  • высоковольтные.

Следует отметить, что эксплуатироваться трансформатор тока должен только с подключенным амперметром или с закороченной вторичной обмоткой. В противном случае на вторичной обмотке возникает высокое напряжение, способное убить.

Блок: 7/7 | Кол-во символов: 463
Источник: https://www.MisLife.ru/raznoe/princip-raboty-transformatora-napryazheniya.html

Зависимость напряжения от количества витков

Возникающее напряжение и КПД в устройстве на второй обмотке напрямую зависит от количества витков на ней.

Рассмотрим наиболее распространенные разновидности, касающиеся этого вопроса:

  1. Разделительный трансформатор. Здесь электрическое соединение обмоток отсутствует, а количество витков на второй из них равно первой. То есть, n1 / n2 = 1.
  2. Понижающий. В этом случае на вторичной обмотке находится меньше витков проводника, чем на первичной, или n1 / n2 ˃ 1.
  3. Повышающий трансформатор. Здесь ситуация прямо противоположна предыдущему случаю — на вторичной обмотке витков больше, чем на первичной n1 / n2 ˂ 1.

В некоторых устройствах есть возможность изменять режим работы и параметр n2 в зависимости от потребностей конечного потребителя и изменяющихся условий эксплуатации.

Блок: 6/9 | Кол-во символов: 817
Источник: https://1001student.ru/fizika/transformator.html

Как проверить трансформатор

Короткое замыкание обмоток

Хотя обмотки  прилегают очень плотно к друг другу, их разделяет лаковый диэлектрик, которым покрываются и первичная и вторичная обмотка. Если где-то возникло короткое замыкание, то трансформатор будет сильно греться или издавать сильный гул при работе. В этом случае стоит замерить напряжение на вторичной обмотке и сравнить, чтобы оно совпадало с паспортным значением.

Обрыв обмотки трансформатора

При  обрыве все намного проще. Для этого с помощью мультиметра мы проверяем целостность первичной и вторичной обмотки.

На фото ниже я проверяю целостность первичной обмотки, которая состоит из 2650 витков. Сопротивление есть? Значит все ОК. Обмотка не в обрыве. Если бы  она была в обрыве, мультиметр показал бы на дисплее “1”.

проверить трансформатор

Таким же способом проверяем и вторичную обмотку, которая состоит из 18 витков

проверить вторичную обмотку трансформатора

Блок: 7/8 | Кол-во символов: 865
Источник: https://www.RusElectronic.com/ustrojstvo-transformatora/

Из чего состоит трансформатор


Строение рассматриваемого технического приспособления уже было рассмотрено выше. Но возникает вопрос: а какие магнитные материалы применяются для обеспечения его бесперебойной работы?

Магнитные материалы

Магнитная система трансформаторов обычно делается из специальной электротехнической стали высокой степени чистоты. Используется она по той причине, что позволяет добиться максимальной передачи магнитного сигнала без больших потерь и увеличивает КПД устройства.

Также к популярным магнитным материалам относятся всевозможные сплавы с применением в их составе углерода и кремния, который позволяет значительно увеличить магнитную проницаемость материала.

Магнитопровод и его типы

Что касается магнитопровода, то он обычно делится на типы:

  1. Стержневой тип. Отличается ступенчатым сечением вертикального стержня, вписывающегося в окружность. На самих вертикальных элементах располагаются обмотки.
  2. Броневой тип. Здесь каждый стержень имеет прямоугольную форму в поперечном сечении и это же касается обмоток – они также прямоугольные. Производство таких элементов достаточно затруднено.
  3. Тороидальный тип. Отличается круглой формой и требует минимальное количество материала для изготовления. Сечение здесь круглое, а обмотка наматывается перпендикулярно направлению линий круга.

Есть и более углубленные классификации, но они представляют интерес больше для специалистов. Параметры разных типов магнитопроводов могут значительно отличаться.

Блок: 7/9 | Кол-во символов: 1470
Источник: https://1001student.ru/fizika/transformator.html

Интересное видео: Как работает трансформатор?

Рассмотрев особенности, принцип работы повышающих трансформаторов, можно оценить их важность в линиях электропередач. Применение подобного оборудования повышает качество электричества в бытовых, промышленных сетях. Его устанавливают повсеместно. Представленные разновидности установок сегодня пользуются высоким спросом.

Блок: 8/8 | Кол-во символов: 395
Источник: https://ProTransformatory.ru/vidy/povyshayushhij-transformator

Применение трансформаторов


Самая главная область использования рассматриваемого приспособления – это электросети, которые подают ток для домов, заводов, офисных помещений и т. д.

Электростанции используют силовые трансформаторы для того, чтобы подавать на потребителя ток не 16 кВ напряжения, каким они его принимают, а привычные 220-380 В.

Также устройство активно используется во всевозможном электрооборудовании, установках на производстве, в бытовой технике и источниках питания.

Блок: 9/9 | Кол-во символов: 507
Источник: https://1001student.ru/fizika/transformator.html

Кол-во блоков: 27 | Общее кол-во символов: 30040
Количество использованных доноров: 7
Информация по каждому донору:

  1. https://ProTransformatory.ru/vidy/povyshayushhij-transformator: использовано 4 блоков из 8, кол-во символов 3441 (11%)
  2. https://sesaga.ru/ustrojstvo-i-princip-raboty-transformatora.html: использовано 1 блоков из 3, кол-во символов 6802 (23%)
  3. https://www.MisLife.ru/raznoe/princip-raboty-transformatora-napryazheniya.html: использовано 3 блоков из 7, кол-во символов 903 (3%)
  4. https://www.asutpp.ru/transformatory-napryazheniya.html: использовано 2 блоков из 5, кол-во символов 3593 (12%)
  5. https://www.RusElectronic.com/ustrojstvo-transformatora/: использовано 5 блоков из 8, кол-во символов 4441 (15%)
  6. https://1001student.ru/fizika/transformator.html: использовано 5 блоков из 9, кол-во символов 6253 (21%)
  7. https://transformator220.ru/vidy/transformator-povyshayushhij.html: использовано 4 блоков из 5, кол-во символов 4607 (15%)



Поделитесь в соц.сетях:

Оцените статью:

1 Звезда2 Звезды3 Звезды4 Звезды5 Звезд (Пока оценок нет)
Загрузка...

Добавить комментарий